طراحی یک شبیه شبکه‌ی عصبی مصنوعی جهت تعیین فراسنجهای آبخوان آزاد

نویسندگان

  • طاهره آذری دانشجوی دکترای زمین شناسی گرایش آبشناسی، بخش علوم زمین، دانشکده علوم، دانشگاه شیراز
چکیده مقاله:

در این مقاله، یک شبکه­ی عصبی مصنوعی جهت تعیین فراسنجهای آبخوان آزاد (قابلیت انتقال آبخوان، ضریب ذخیره، آبدهی ویژه و شاخص تأخیر) طراحی گردیده است. تابع چاه مربوط به آبخوانهای آزاد با روش پس انتشار خطا و به کارگیری الگوریتم بهینه سازی لونبرگ-مارکوآرت به این شبکه آموزش داده شده است. با اعمال روش تحلیل مولفه­ی‌ اصلی بر مجموعه داده‌های آموزش، ساختار شبکه با آرایش (3×6×3)، صرف نظر از تعداد داده‌های آزمون آبکشی، ثابت گردید و بازده­ی آن بطور قابل ملاحظه ای افزایش داده شد. این شبکه با دریافت هر مجموعه داده آزمون آبکشی واقعی، مختصات نقطه انطباق بهینه را تولید می‎کند، سپس مختصات نقطه­ی انطباق با حل تحلیلی بولتون (1963) ترکیب گردیده، و مقادیر فراسنجهای آبخوان محاسبه می‌شوند. توانایی تعمیم و عملکرد این شبکه با 100000 مجموعه­ی داده مصنوعی ارزیابی گردید و دقت آن با استفاده از داده‌های دو آزمون آبکشی واقعی با روش انطباق منحنی نمونه­ی کامل مقایسه شد. شبکه­ی پیشنهادی به عنوان یک روش جایگزین ساده‌تر و دقیقتر نسبت به روش مرسوم انطباق منحنی نمونه­ی کامل برای محاسبه فراسنجهای آبخوان آزاد توصیه می‌شود.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طراحی یک شبیه شبکه ی عصبی مصنوعی جهت تعیین فراسنجهای آبخوان آزاد

در این مقاله، یک شبکه­ی عصبی مصنوعی جهت تعیین فراسنجهای آبخوان آزاد (قابلیت انتقال آبخوان، ضریب ذخیره، آبدهی ویژه و شاخص تأخیر) طراحی گردیده است. تابع چاه مربوط به آبخوانهای آزاد با روش پس انتشار خطا و به کارگیری الگوریتم بهینه سازی لونبرگ-مارکوآرت به این شبکه آموزش داده شده است. با اعمال روش تحلیل مولفه­ی اصلی بر مجموعه داده های آموزش، ساختار شبکه با آرایش (3×6×3)، صرف نظر از تعداد داده های آز...

متن کامل

طراحی دو شبکه عصبی مصنوعی برای تعیین متغیرهای آبخوان محبوس نشتی

در سال‌های اخیر، شبکه‌های عصبی مصنوعی (Artificial Neural Networks - ANNs) به‌عنوان جایگزین روش‌های انطباق منحنی‌تیپ (Type curve matching techniques) برای تعیین متغیرهای آبخوان استفاده می‌شوند. در این پژوهش دو شبکه عصبی مصنوعی از نوع پرسپترون چندلایه (Multilayer Perceptron Network - MLPN) برای تعیین متغیرهای آبخوان محبوس نشتی (leaky confined aquifer) طراحی شده است. نشت آب به آبخوان یا از لایه ‌ن...

متن کامل

طراحی و شبیه سازی یک الگوریتم مسیریابی در شبکه های سیّار اقتضایی مبتنی بر شبکه های عصبی مصنوعی

چکیده یکی از انواع شبکههای بی سیم که در سالهای اخیر بسیار مورد توجه قرار گرفته اند، شبکههای اقتضایی سیّار است که از تعدادی گره متحرک تشکیل شده است. متغیّر بودن موقعیت نسبی گرههای تشکیل دهنده، نیاز به الگوریتم مسیریابی چابکی دارد که بتواند تحّرک گرهها را مدیریت نموده و بستههای انتقال یافته را به طرز صحیحی به مقصد برساند به طوری که هیچ یک از دو طرف ارتباط از وجود تحّرک در گرههای شبکه مطلع نشوند. ای...

متن کامل

تعیین محل مناسب جهت تغذیه مصنوعی آب زیرزمینی آبخوان هشتگرد به روش منطق فازی GIS مبنا

در طول دو دهه گذشته به علل مختلف از جمله کاهش بارندگی ها، افزایش جمعیت، مدیریت نامناسب آب، برداشت از منابع آب زیرزمینی به صورت مدیریت نشده در کشور افزایش یافته است که کاهش تراز آب زیرزمینی، ایجاد فرونشست ها و فروچاله ها در دشت ها از پیامدهای آن بوده است. مدیریت صحیح منابع آب زیرزمینی از طریق دو مولفه اصلی کاهش برداشت از آبخوان و افزایش تغذیه آن امکان پذیر می باشد. هدف از انجام تحقیق حاضر، مکان ...

متن کامل

تدوین یک مدل شبیه‌سازی-بهینه‌سازی فازی به منظور تخمین بهینه فراسنجهای آبخوان محصور

برای مدیریت صحیح منابع آب زیرزمینی به عنوان یکی از منابع اصلی، تخمین دقیقی از پارامترهای آبخوان لازم است. روش‌های موجود مدیریت آب‌های زیرزمینی، به منظور سادگی، عدم قطعیت‌های پارامترهای آزمایش پمپاژ را نادیده می‌گیرند. در این تحقیق، یک مدل شبیه‌سازی-بهینه‌سازی فازی به منظور درنظر گرفتن عدم قطعیت‌ها در تعیین پارامترهای آبخوان تدوین شده‌است. مدل شبیه‌سازی-بهینه‌سازی فازی مذکور قادر است با توجه به ...

متن کامل

شبیه سازی تغییرات کیفی آب زیرزمینی با مدل شبکة عصبی مصنوعی (مطالعة موردی: آبخوان کاشان)

مجاورت آبخوان کاشان با جبهة آب شور دریاچة نمک به پیشروی آب شور به داخل آبخوان منجر شده است. در این پژوهش، با توجه به وضعیت موجود، شبیه‏سازی کیفی آب زیرزمینی دشت کاشان با استفاده از مدل‏های شبکة عصبی مصنوعی انجام شد. بدین منظور، نخست به تعیین تیپ غالب آب منطقه پرداخته شد. سپس، اقدام به مدل‏سازی شد. نتایج حاصل از بررسی تیپ آب به وسیلة نمودار پایپر نشان داد که کلرور- سدیم تیپِ غالب آب منطقه است. بن...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 9  شماره 28

صفحات  1- 18

تاریخ انتشار 2016-06-21

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023